(资料图)
1、一.如果数列{Xn},{Yn}及{Zn}满足下列条件:(1)当n>No时,其中No∈N*,有Yn≤Xn≤Zn,(2)当n→+∞,limYn =a;当n→+∞ ,limZn =a,那么,数列{Xn}的极限存在,且当 n→+∞,limXn =a。
2、证明 因为limYn=a limZn=a 所以根据数列极限的定义,对于任意给定的正数ε,存在正整数N1,N2,当n>N1时 ,有〡Yn-a∣﹤ε,当n>N2时,有∣Zn-a∣﹤ε,现在取N=max{No,N1,N2},则当n>N时,∣Yn-a∣<ε,∣Zn-a∣<ε同时成立,且Yn≤Xn≤Zn,即a-ε
本文为大家分享到这里,希望小伙伴们有帮助。
标签: